2020

MATHEMATICS - GENERAL

Fourth Paper

Full Marks : 100
Candidates are required to give their answers in their own words as far as practicable.

SET - 1

প্রাক্তলিशিত সংখাগুলি পূণমান निর্দেশক।
Module-VII is compulsory and answer any one Group from Module-VIII

Module-VII

[Elements of Computer Science and Programming]
(মान : ৫०)
১নং প্রা্ন এবং অবশিষ্ট থেকে বে-কোনো তিনটি প্রশ্রে উত্তর দাও।
31 बে-কোনো পাঁচটি প্রক্নের উত্তর দাজ: $8 \times<$
(ক) $(23.45)_{8}$ সং্থ্যাটিকেক সমতুল দর্শমিক সং্থায় পরিণত করেরা।

WRITE (*, 5) A, I
5 FORMAT (X, F 10.2, I 2)
(প্রতিটি রিক্ত স্থানরে b প্রতীকে ব্যবহর করো)

x	y	$f(x, y)$
1	1	1
1	0	1
0	1	0
0	0	0

(ঘ) ASCII এবং FORTRAN-এর পুরো কथাটি লেতো।

 ক্রেরা :

$$
\mathrm{U}=\mathrm{A} / \mathrm{C}+(\mathrm{C}-\mathrm{B}) / \mathrm{D}+\mathrm{J} / \mathrm{I}^{*} \mathrm{~K} .
$$

（ख）$\frac{\sqrt{a}+\log _{e} b}{c+d \sin x}-$ Gর FORTRAN রুপ লেণো।

$$
\text { WRITE }(*, 2) \mathrm{L}, \mathrm{X}, \mathrm{Y}
$$

2 FORMAT（I 4．2， 2 E6．3）
२।（ক）২－এর পূরক পদ্ধতি দ্বারা নিটন্নর বিয়োগফল্লাটি নিণ্ৰয় করো：

$$
(110011.101)_{2}-(10110.001)_{2}
$$

（খ）निন্নলিথিত যোড়শ সংখ্যাটিকে সমতুল অষ্টাস্দী সংথ্যায় পরিপত কর্রো：

$$
(\mathrm{AB} . \mathrm{C} 4)_{16}
$$

（গ）निন্নল⿵⺆⿻二丨匕刂 বুनীয় অপেকককের্র একটি বর্তনী গঠন করো：

$$
f(x, y, z)=x z+y^{\prime}\left(x^{\prime}+x\left(y+z^{\prime}\right)\right)
$$

बই বর্তনীর একটি সহজতর সমতুল্য বর্তনী গঠন কর্রে।
৩।（ক）স্বাভাবিক সংথ্যা N－এর ফ্যা｜্ট্যেরিয়াল নির্ণয় করার জন্য একটি FORTRAN 77 প্রোপ্রাম লেতেথে।
 কোনো প্রস্তাব সমর্থন করতত পারেন। কোতো একটি প্রস্তাব সদস্যদের 心োটের মাধ্যান যাতে পাশ হয়— এইজূপ একটি সরল সুফচ বর্ত্নী নির্ণয় কর্রে।

$$
91,34,28,102,55,3,19,78,10,47
$$

（v）Karnaugh Map ব্যবহার কর়র নিস্নলিথিত বুল্নীয় অঢপকক্ককটি সর়ল ক্রো：

$$
f(x, y, z)=x^{\prime} y z^{\prime}+x y^{\prime} z+x y z^{\prime}+x^{\prime} y^{\prime} z
$$

$$
a x^{2}+b x+c=0, \quad a \neq 0
$$

Fibonacci－ब्র্ম ： $0,1,1,2,3,5,8,13,21, \ldots$
বেখানে $n \geq 1$ এবং চূড়ান্ত ফল হিসাবে পদগ্গুলির বোগফল্নఆ মুদ্রিত হবে।

山। (ক) निন্ন্লিথিত অসীম শ্রেপিটি দ্বারা $\sin x$ সংজ্बতত:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots
$$

$$
\begin{aligned}
f(x) & =0 & & & x \leq 0 \\
& =x^{2}-\sin x & & & 0<x \leq \pi \\
& =\sin x-x^{2} & & & \pi<x \leq 2 \pi \\
& =0 & & & \text { elsewhere }
\end{aligned}
$$

এবং $\pi=22 / 7$
 তৈরি করো:

x	y	z	f
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

(v) Karnaugh Map ব্যবহার করে নিস্নলিথিত বুলীয় অঢপক্ককটট সরলল কট্রা:

$$
f(x, y, z)=x^{\prime} y z+x y^{\prime} z^{\prime}+x y z^{\prime}+x y z
$$

 প্রোপ্রাম ন্লােো, ভেখানে $a=1.0$ এবং $b=2.3$ ।
(v) ${ }^{n} C_{r}-$-এর মান निর্ণা়়র জন্য Subroutine subprogram-এর সাহায্যে একটট FORTRAN 77 প্রোগ্রাম লোো। ১০

৯। Newton-Raphson পদ্ধতির সাহায্যে ছয় দর্শমিক স্থান পর্যন্ত নির্ভুলजাবে $x^{3}-4 x-9=0$ সমীকর্ণেের একটট বাস্তব বীজ निর্ণয়ের জন্য একটট দক্ম FORTRAN 77/BASIC/C প্রোপ্রাম লোেখা।
 করেরা:

x	y	z	f
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	1
0	0	0	0

(থ) দুইটি প্রদ্ত্ত ধনাய্মক পূর্রসংখ্যার গ.সা.ঔ. এবং ল.সা.ঔ. বের করার জন্য BASIC/FORTRAN 77/90-এ একটি প্রোপ্রাম लित्থে।

[English Version]

The figures in the margin indicate full marks.
Module - VII
[Elements of Computer Science and Programming]
(Marks : 50)
Answer question no. 1 and any three questions from the rest.

1. Answer any five questions :
(a) Convert the number $(23.45)_{8}$ to its equivalent decimal number.
(b) If $\mathrm{A}=-145.731, \mathrm{I}=65$, describe the output of the following FORTRAN statements:

WRITE (*, 5) A, I
5 FORMAT (X, F 10.2, I 2)
(Use symbol b to denote each blank space)
(c) Draw a switching circuit that realizes the switching function given by the following table :

x	y	$f(x, y)$
1	1	1
1	0	1
0	1	0
0	0	0

(d) Write the full form of ASCII and FORTRAN.
(e) Write the dual statement of the statement " $a=0$ and $b=0$ if and only if $a+b=0$ " in a Boolean algebra.
(f) If $\mathrm{A}=7.5, \mathrm{~B}=1.9, \mathrm{C}=2.0, \mathrm{D}=0.8, \mathrm{I}=7, \mathrm{~J}=13, \mathrm{~K}=5$, evaluate the following arithmetic expression in FORTRAN 77 : $\mathrm{U}=\mathrm{A} / \mathrm{C}+(\mathrm{C}-\mathrm{B}) / \mathrm{D}+\mathrm{J} / \mathrm{I} * \mathrm{~K}$.
(g) State the Huntington Postulates which define a Boolean Algebra ($\mathrm{B},+^{+},{ }^{\prime}, 0,1$).
(h) Write FORTRAN expression of $\frac{\sqrt{a}+\log _{e} b}{c+d \sin x}$.
(i) Point out the errors (if any) in the following FORTRAN program segment:

$$
\begin{gathered}
\text { WRITE }\left(^{*}, 2\right) \mathrm{L}, \mathrm{X}, \mathrm{Y} \\
2 \text { FORMAT (I 4.2, 2E 6.3) }
\end{gathered}
$$

2. (a) Perform the following subtraction using 2 's complement:

$$
(110011.101)_{2}-(10110.001)_{2}
$$

(b) Find the octal equivalent of the following Hexadecimal number :

$$
(\mathrm{AB} . \mathrm{C} 4)_{16}
$$

(c) Draw a switching circuit for the following Boolean function :

$$
f(x, y, z)=x z+y^{\prime}\left(x^{\prime}+x\left(y+z^{\prime}\right)\right)
$$

Draw an equivalent simpler circuit of this circuit.
3. (a) Write a FORTRAN 77 program to find the factorial of a natural number N .
(b) A committee consisting the three members approves any proposal by majority vote. Each member can approve a proposal by pressing a button attached to his/her seat. Design a simple switching circuit that will allow current to pass when and only when a proposal is approved.
4. (a) Draw a flowchart for sorting the following list of real numbers in descending order :

$$
91,34,28,102,55,3,19,78,10,47
$$

(b) Simplify the following Boolean function using Karnaugh Map :

$$
\begin{equation*}
f(x, y, z)=x^{\prime} y z^{\prime}+x y^{\prime} z+x y z^{\prime}+x^{\prime} y^{\prime} z \tag{10}
\end{equation*}
$$

5. (a) Given the quadratic equation $a x^{2}+b x+c=0,(a \neq 0)$, draw a flowchart to compute the roots of the equation.
(b) Draw a flowchart to print the first ' n ' terms of the Fibonacci sequence: $0,1,1,2,3,5,8,13,21$ Where $n \geqslant 1$ and also print the sum of the terms.
6. (a) $\sin x$ is defined by the following infinite series :

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots
$$

Design an algorithm to evaluate the value of $\sin x$ for a given value $x=x_{0}$ with error $<10^{-6}$.
(b) Design an algorithm to find the value of $f(x)$ at $x=x_{0}$ where,

$$
\begin{array}{rlrl}
f(x) & =0 & , & \\
& =x^{2}-\sin x & , & \\
& =\sin x-x^{2} & , & \\
& =0<x \leq \pi \leq 2 \pi \\
& =0 & & \\
& \text { elsewhere }
\end{array}
$$

and $\pi=22 / 7$
7. (a) Find the logic circuit that represents the following Boolean function. Find also an equivalent simpler circuit :

x	y	z	f
1	1	1	1
1	1	0	0
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

(b) Simplify the following Boolean function using Karnaugh Map :

$$
f(x, y, z)=x^{\prime} y z+x y^{\prime} z^{\prime}+x y z^{\prime}+x y z
$$

8. (a) Write an efficient FORTRAN 77/90 programme to evaluate $\int_{a}^{b} x^{2} e^{\tan ^{-1} x} d x$ by Trapezoidal rule with 8 ordinates where $a=1.0$ and $b=2.3$.
(b) Write a FORTRAN 77 program to compute ${ }^{n} C_{r}$ using a subroutine subprogram.
9. Write a FORTRAN 77/BASIC/C programme to find a real root of the equation $x^{3}-4 x-9=0$ correct up to 6 D by Newton-Raphson method.

10．（a）Find the Boolean function represented by the following truth table in Conjunctive Normal Form ：

x	y	z	f
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	1
0	0	0	0

（b）Write a program in BASIC／FORTRAN 77／90 to find the H．C．F．and L．C．M．of two given positive integers．

Module－VIII

（বিভগ－ক）

［A Course of Calculus］

（मान ：৫०）
ゝゝনং প্রক্ন এবং অবশিষ্ট থেকে ভে－কোনো তিনটি প্রর্নের উত্তর দাও।
ゝゝ। बে－কোনো পাচটি প্রক্নের উত্তর দাজ：

（v）Fourier Series－এর অভ্যিসরণ এর জন্য Dirichlet’s－এর xর্তটট বিবৃত কররো।
（গ）＇a＇এবং＇b＇－কে $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$ থেরে নিষ্কাশন করে আংশিক অবকল্ল সমীকরণটি গঠন করো।
（ঘ）মান নির্ণয় কর্রো：$L\{\sin (7 t+5)\}$ ।
（セ）দেখাও बে $\left(2 x^{2}+3 x\right) y_{2}+(6 x+3) y_{1}+2 y=(x+1) e^{x}$－টि সटिक।
（Б）Laplace transform－এরর अर্তিত্বের জন্য Sufficient Condition शলি লোো।

（জ）$x+\frac{(2!)^{2}}{4!} x^{2}+\frac{(3!)^{2}}{6!} x^{3}+\ldots+\frac{(n!)^{2}}{(2 n)!} x^{n}+\ldots$ घাত শ্রেণির অভিসরণ ব্যাসার্ধ নির্ণয় कররা।
（ब）মান निর্ণয় ক＜রো：$L^{-1}\left\{\frac{1}{S^{2}+9}\right\}$

১マ। (ब) দ্থোভ ভে $\log _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$ এবং এই ঘাত শ্রে⿵িটির অভ্যিসারণ ব্যাসার্ধ নির্ণয় করো।
(খ) निঢম্না|ক্ত পর্যাবৃত্ত অপেক্ষক $f(x)$-এর ফুরিয়ার শ্র্রৌিটি নির্ণয় কর্রা :

$$
f(x)=\left\{\begin{array}{rlr}
-1, & \text { for } & -\pi<x<0 \\
1, & \text { for } & 0 \leq x \leq \pi
\end{array}\right.
$$

কারপর দেখাও !ে:

$$
1-\frac{1}{3}+\frac{1}{5}-\ldots=\frac{\pi}{4}
$$

 কিন্টু $[0, b]$ অন্তরাত্লে কেবলমাত্র pointwise অভ্বিসারী।
(থ) দেথাভ ৰে $\sum \frac{(-1)^{n}}{n}|x|^{n}$ শ্রেণিটি সমভাবে অক্তিসারী বখন $|x| \leq 1$ ।
>8। (ক) সমাধান কররা :

$$
\left(D^{3}-D^{2}+4 D-4\right) y=68 e^{t} \sin 2 t \text { बেখান্ন } y=1, D y=-19, D^{2} y=-37 \text { घথन } t=0 \text { এবং } D=\frac{d}{d x} \text { । }
$$

(च) সমাধান কর্রা : $p+q=x+y+z$ যেখানন $p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$ ।

১৫। (ब) ড্রেপ্রাচল পদ্ধত্রির সাহায্যে সমাধান কঢ্রো $\frac{d^{2} y}{d x^{2}}+y=\tan x$ ।

১৬। (ব) y-এর জনা সমাধান করররা :

$$
\begin{aligned}
& \frac{d x}{d t}+5 x+y=e^{t} \\
& \frac{d y}{d t}+3 y-x=e^{2 t}
\end{aligned}
$$

(v) মান निর্ণয় ক<রো : $L^{-1}\left\{\frac{1}{S\left(S^{2}+1\right)}\right\}$

ゝ৭। Laplace Transformation ব্যাবহার কর্রে সমাধাল কর্রা :

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+10 y=0, y(0)=1, y\left(\frac{\pi}{4}\right)=\sqrt{2} \tag{so}
\end{equation*}
$$

ゝ৮। $f(x)=|x|, x \in[-\pi, \pi]$ অপো্মর্কটির Fourier শ্রেণিটি নির্ণ্য় করো। এর থেরে দেখাও বে

$$
\begin{equation*}
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8} \tag{so}
\end{equation*}
$$

د৯। (ক) आংশিক অবকলল সমীকরণ্ণটির সমাধাল কররা:

$$
y^{2} p-x y q=x(z-2 y)
$$

२०। (ब) মাन निণ্র্য কর্রো: $L^{-1}\left(\frac{1}{s\left(s^{2}+w^{2}\right)}\right)$
(v) সমাধাল করেরে: $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=\sin (\log x)$

[English Version]

The figures in the margin indicate full marks.
Module - VIII
(Group - A)

[A Course of Calculus]

(Marks : 50)
Answer question no. 11 and any three questions from the rest.
11. Answer any five questions :
(a) Test the convergence of the sequence of functions $\left\{f_{n}\right\}$ where $f_{n}(x)=\frac{x}{1+n x} ; n \in N ; \forall x>0$.
(b) State Dirichlet's conditions for convergence of a Fourier series.
(c) Form the partial differential equation by eliminating a and b from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
(d) Find: $L\{\sin (7 t+5)\}$.
(e) Verify that the equation $\left(2 x^{2}+3 x\right) y_{2}+(6 x+3) y_{1}+2 y=(x+1) e^{x}$ is exact.
(f) State sufficient conditions for the existence of Laplace transform.
(g) Find the particular integral y_{p}, by the method of undetermined coefficient:

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=2 e^{3 x} .
$$

(h) Determine the radius of convergence of the power series $x+\frac{(2!)^{2}}{4!} x^{2}+\frac{(3!)^{2}}{6!} x^{3}+\ldots+\frac{(n!)^{2}}{(2 n)!} x^{n}+\ldots$
(i) Find the following inverse Laplace transformation : $L^{-1}\left\{\frac{1}{S^{2}+9}\right\}$.
12. (a) Show that $\log _{e}(1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots$ and find its radius of convergence.
(b) Expand in a Fourier series of the periodic function $f(x)$ with period 2π defined as

$$
f(x)=\left\{\begin{array}{rlr}
-1, & \text { for }-\pi<x<0 \tag{10}\\
1, & \text { for } \quad 0 \leq x \leq \pi
\end{array}\right.
$$

Hence, show that $1-\frac{1}{3}+\frac{1}{5}-\ldots=\frac{\pi}{4}$.
13. (a) Show that the series $\sum \frac{x}{(n x+1)\{(n-1) x+1\}}$ is uniformly convergent on any interval $[a, b]$, $0<a<b$, but only pointwise on $[0, b]$.
(b) Show that the series $\sum \frac{(-1)^{n}}{n}|x|^{n}$ is uniformly convergent in $|x| \leq 1$.
14. (a) Solve : $\left(D^{3}-D^{2}+4 D-4\right) y=68 e^{t} \sin 2 t$, given $y=1, D y=-19, D^{2} y=-37$ at $t=0$ and $D=\frac{d}{d x}$.
(b) Solve : $p+q=x+y+z$ where $p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$.
15. (a) Solve, by method of variation of parameters $\frac{d^{2} y}{d x^{2}}+y=\tan x$.
(b) Find the eigenvalues and eigenfunction for the differential equation

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0(\lambda>0), \quad y_{1}(0)=0, y_{1}(1)=0
$$

16. (a) Solve for y :

$$
\begin{aligned}
& \frac{d x}{d t}+5 x+y=e^{t} \\
& \frac{d y}{d t}+3 y-x=e^{2 t}
\end{aligned}
$$

(b) Find: $L^{-1}\left\{\frac{1}{S\left(S^{2}+1\right)}\right\}$
17. Solve by Laplace transformation :

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+10 y=0, y(0)=1, y\left(\frac{\pi}{4}\right)=\sqrt{2} \tag{10}
\end{equation*}
$$

18. Find the Fourier series for the function $f(x)=|x|, x \in[-\pi, \pi]$

Hence, deduce $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$
19. (a) Solve the partial differential equation : $y^{2} p-x y q=x(z-2 y)$.
(b) Form partial differential equation by eliminating the arbitrary function from $z=f\left(\frac{x y}{z}\right)$.
20. (a) Find: $L^{-1}\left(\frac{1}{s\left(s^{2}+w^{2}\right)}\right)$
(b) Solve : $x^{2} \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}+5 y=\sin (\log x)$

Module-VIII

(বিভাগ - খ)

[Discrete Mathematics]

(मान : ৫०)
১১নং প্রশ্ন এবং অবশিষ্ট রেরে বে-কোনো তিনটি প্রবশ্নে উত্তর দাও।

১ゝ। यে-কোনো পাচটি প্রত্নের ঊন্তর দাভ:

(ক) 16!-কে 17 দ্বারা ভাগ কররল কত অর্বশিষ্ট থাকে নির্ণয় কররা।
(খ) নীচচর অসন্পূর্ণ ISBN-এর সঠিক যাচাই অঙ্কটট নির্ণয় করেরা :

$$
81-85392-68-
$$

(গ) 'AND' gate-এর সত্যসার্রপি গঠিন করো।
(ঘ) $x y+x^{\prime} y+x^{\prime} y^{\prime}$ এই বুলীয় রাশিমালাটিকে যৌপিক স্বভাবী আকারে (C.N.F.) প্রকাশ কররা।

(Б) यদি $\operatorname{gcd}(a, b)=1$ হহ়, ততে দেখাও ৷ে $\operatorname{gcd}(a+b, a b)=1$.

(জ) যে-কোনো এব্টট বুলীয় অ্যালজের্রা B-এর জন্য দেখাও যে $x+y=1$ এবং $x y=0$ হুন্न $y=x^{\prime}$, এেখানে $x, y \in B$.
(d) দেখাত যে (62.625) $10=(111110.101)_{2}$.

 ওই বস্তুর UPC কত ?

ゝ৩। (ক) p এবং q দুটি পৃথক ন্মীলিক সংথ্যা হরেল দেথাও যে, $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$ ।
 পূর্ণসংথ্যা s এবং t निির্ণয় কর্রা যাতज $\operatorname{gcd}(315,4235)=315 s+4235 t$ হয়।

১8। (ক) প্রমাপ কররো যে, $\phi(5 n)=5 \phi(n)$ হুবে যদি এবং কেবল यদি $5, n$-কে ভাগ করে।
(v) निর্ন্লিথিত Master Card-এর यাচাই সংখ্যা নিির্ধয় কররো:

5546 - 1997 - $2335-500-$
১৫। (ক) 'Chinese Remainder Theorem’ বিবৃত্ত কর্র্র এবং এর় সাহায্যে সমাধান কর্রা : $x \equiv 2(\bmod 3), x \equiv 3(\bmod 4), x \equiv 4(\bmod 5)$

১৬। (ক) निম্নলিথিত व্রেণিটির কারক অণপকককক নিণ্ণয় করো:

$$
\{1,-1,-1,1,-1,-1,1,-1,-1,1, \ldots\}
$$

 $a_{0}=0$ बा 5 श़़।
(v) (2FB5) ${ }_{10}$-কে hexadecimal बোকে binary-কে পরিবর্ত্ত কর্রো। >o

১৮। (ক) निস্ন্ললিথিত অন্তর সমীকরণণটি প্রাথমিক শর্ড অনুযায়ী সমাধান কত্রো:
$a_{n}=a_{n-1}+a_{n-2}, n \geq 3$ ভেখানে, $a_{1}=1, a_{2}=3$
(v) $1!+2!+3!+4!+\ldots+100$! সংখ্যাটিকক 15 দ্বারা ভাগ কররলে ভাগশেব কত হাবে নির্ণয় কররো।

(v) $1!+2!+3!+\ldots+49$! সংথ্যাটির একক স্থানীয় অঙ্কটি निর্ণয় কর্রে।। >o

[English Version]

The figures in the margin indicate full marks.

Module - VIII

(Group - B)
[Discrete Mathematics]
(Marks : 50)
Answer question no. 11 and any three questions from the rest.
11. Answer any five questions:
(a) Find the remainder when 16 ! is divided by 17 .
(b) Find the correct check digit for the following incomplete ISBN 81-85392-68-
(c) Construct a truth table for 'AND' logic gate.
(d) Express the Boolean expression $x y+x^{\prime} y+x^{\prime} y^{\prime}$ in conjunctive normal form.
(e) Find a recurrence relation that define the sequence $2,4,8,14,22,32, \ldots$
(f) If $\operatorname{gcd}(a, b)=1$, then show that $\operatorname{gcd}(a+b, a b)=1$.
(g) If n be an even positive integer, prove that $\phi(2 n)=2 \phi(n)$ where ϕ is the Euler's phi function.
(h) For any Boolean algebra B, if $x, y \in B$, then show that $x+y=1$ and $x y=0$ implies $y=x^{\prime}$.
(i) Show that $(62.625)_{10}=(111110.101)_{2}$.
12. (a) Find a Round-Robin Tournament schedule for 5 teams.
(b) The identification number of some particular company in India is 890102. The identification number of some product of that company is 300090 . Write down U.P.C. for this product.
13. (a) Show that if p and q are two distinct primes then $p^{q-1}+q^{p-1} \equiv 1(\bmod p q)$.
(b) Applying division algorithm find the g.c.d. of 315 and 4235. Then find integers s and t such that $\operatorname{gcd}(315,4235)=315 s+4235 t$.
14. (a) Prove that $\phi(5 n)=5 \phi(n)$ if and only if 5 divides n.
(b) Find the check digit of a Master card 5546-1997-2335-500-
15. (a) State 'Chinese Remainder Theorem' and use it to solve the following system : $x \equiv 2(\bmod 3), x \equiv 3(\bmod 4), x \equiv 4(\bmod 5)$
(b) Find the number of positive integers less than n and prime to n when n takes the value 256 .
16. (a) Find the generating function for the sequence
$\{1,-1,-1,1,-1,-1,1,-1,-1,1, \ldots\}$
(b) Prove that for every positive integer $n,\left(n^{3}-n\right)$ is divisible by 6 .
17. (a) If $N=a_{m} 10^{m}+a_{m-1} 10^{m-1}+\ldots+a_{1} 10+a_{0}$, then show that N is divisible by 5 if and only if $a_{0}=0$ or 5.
(b) Convert (2FB5) 10 from hexadecimal to binary.
18. (a) Solve the following difference equation with given initial condition :
$a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$, where $a_{1}=1, a_{2}=3$.
(b) What is the remainder when $1!+2!+3!+4!+\ldots+100$! is divided by 15 ?
19. (a) Prove that there are infinitely many prime numbers.
(b) Find digit in unit place in the sum : $1!+2!+3!+\ldots+49$!

